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Abstract: We will reveal specific locations of potential habitats of Anopheles stephensi, a new and invasive malaria vector, 

in Kwale, Kenya. Previous regression models have not been able to locate specific habitats of this malaria vector in Kenya. 

This publication seeks to determine locations of potential artificial water container habitats of An. stephensi via remote visual 

detection and determine geo-ecological factors that are associated with those habitats. The preliminary signature mapping of 

potential habitats was done by obtaining GPS coordinates of potential, capture point, sentinel site locations through visual 

remote sensing of artificial water containers using Google Earth. Using a second-order eigenfunction, eigendecomposition, 

spatial filter algorithm to determine clustering propensities or non-propensities of those mapped potential capture point, 

sentinel site larval habitats, we were able to eco-cartographically distinguish hot and cold spots on stratified, georeferenced, 

Land Use Land Cover (LULC) polygons, a Digital Elevation Model (DEM), and a Normalized Difference Vegetation Index 

(NDVI) map within ArcGIS Pro. The results showed that there was a strong tendency towards clustering (Moran’s I=0.67, 

p<0.001) and potential habitat hotspots were more likely to occur in urban classified LULC, grid-stratified areas (51.28% and 

46.15% of the hotspot locations were in urban commercial and urban residential land covers respectively). Moreover, the 

georeferenced hotspot locations of potential habitats were found at higher elevations than the coldspots (409.1± 6.112m vs 

379.5 ± 21.51m) and the hotspot habitats were closely associated with soil and low vegetation (mean NDVI=0.121 ± 0.0661). 

When faced with this new vector, these ecological variables can be employed to spatially target and prioritize potential habitats 

for implementing “Seek and Destroy” larval source management programs. 
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1. Introduction 

The invasion of Anopheles stephensi in the Horn of Africa 

is an emerging threat that, if unchecked might constitute a risk 

for up to 126 million people in urban cities of Africa out of a 

total population of 1.2 billion [1]. This potent malaria vector 

[2] was first discovered on the African continent in Djibouti in 

2012 and has since spread to Ethiopia, Sri Lanka and Sudan 

according to WHO Vector Alert 2019 and at the current 

expansion rate it is likely to become established across Africa 
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if nothing is done urgently to control and stop its spread [3]. 

Suspected to be transported by sea trade, as seen with other 

invasive mosquito species, coastal African countries closely 

connected to trade with An. stephensi endemic countries are 

considered at high risk for vector importation and the presence 

of this new vector has already been detected in Kenya, which 

frequently trades with India, Ethiopia, and Sudan [3, 4]. 

However, so far, the existence of An. stephensi has been 

detected accidentally, indicating the insufficient capacity of 

surveillance systems in the area to find or identify the vector 

[4]. More importantly, Africa’s vector surveillance systems 

are lagging in monitoring changes in vector composition and 

distribution. Several initiatives to tackle the invasion are 

ongoing in the Horn of Africa, most of them focusing on 

vector surveillance and understanding the ecology of the 

vector. Nevertheless, there is a need to fund extensive training 

on vector surveillance system approaches to confirm its 

distribution near areas of high movement of humans, animals, 

and goods across international borders. An. stephensi has 

shown resistance to the insecticides recommended by WHO 

for insecticide treated nets and indoor residual spraying, 

hindering the control of this vector through these tools [5]. 

An. stephensi is a competent vector of Plasmodium vivax 

and Plasmodium falciparum and a probable vector of zoonotic 

malaria parasites [2]. Found to have both anthropophilic and 

zoophilic biting habits, the vector typically feeds during the 

twilight hours, contrary to the late night and early biting 

preferences of the dominant vector species in Kenya [1, 6]. 

Moreover, An. stephensi prefers to breed in clear and stagnant 

waters often found in artificial water containers [6-8]. In arid 

and semi-arid regions of Western India, malaria transmission 

was propagated due to the An. stephensi habitats within 

underground community “tanka” (earthen drinking water 

storage reservoir) and “beri” (step well) structures [9, 10]. 

Similarly, studies in Chennai, India reported that An. stephensi 

preferred to breed in man-made and artificial water containers, 

and 78.61% of the breeding habitats found were from 

overhead tanks [7, 8]. These improperly covered underground 

or overhead water tanks harbor mosquito larvae at high and 

consistent densities for year-round malaria transmission [8, 9]. 

Currently, little is known about the geospatial distribution 

of An. stephensi habitats in East Africa. Previously, Thomas [8] 

mapped out the distribution of An. stephensi breeding habitats 

in Chennai and analyzed their relationship to malaria cases 

within the city. However, this study focused more on the 

association of nearby breeding habitats with the intensity of 

malaria transmission [8], rather than the clustering tendencies 

of those habitats and ecological factors influencing them. In 

contrast, Sinka [1] has mapped the spread of An. stephensi 

habitats in cities across Asia and the Horn of Africa and 

utilized ecological factors associated with known An. 

stephensi habitats to create predictive models of other 

environmentally suitable areas at risk of importation of this 

new vector. Nevertheless, the study focused on more 

small-scale mapping of regions [1], instead of the large-scale 

mapping of precise locations in this study. Although mapping 

of An. stephensi habitats in Kenya have not yet been done, 

Jacob [11] mapped the distribution of An. gambiae habitats in 

Kisumu and Malindi, Kenya. Utilizing remote sensing 

techniques, the study determined that ecological factors, such 

as changes in land use, could affect the distribution of 

anopheline larval habitats [11]. 

Therefore, the objectives of this publication will be to 

identify potential artificial water containers of An. stephensi 

via visual detection on Google Earth imagery. For our second 

objective, we spatially target and prioritize potential An. 

stephensi habitat estimators on classified land use land cover 

(LULC) using average slope coefficients and other catchment 

watershed variables from a Digital Elevation Model (DEM) 

and photosynthetic indices from a Normalized Difference 

Vegetation Index (NDVI). Finally, we will employ a 

second-order eigenfunction eigendecomposition algorithm to 

determine clustering propensities or non-propensities [i.e., 

hot/cold spots] of these mapped, potential, An. stephensi 

habitats to distinguish hot and coldspots on LULC, stratified 

polygons to predictively cartographically delineate 

geolocations in Kwale, Kenya, for “Seek and Destroy” larval 

source management programs. “Seek and Destroy” is a new 

real-time control measure for reducing larval, vector density 

in communities affected by malaria through habitat mapping 

for targeted treatment via geospatial artificial intelligence 

infused into an iOS application [12]. 

This research is to determine geolocations of aquatic 

habitats of An. stephensi, a major malaria mosquito vector that 

has recently arrived into East Africa from India. The purpose 

of this research is for mapping An. stephensi artificial water 

habitats to implement a larval source management program 

called “Seek and Destroy.” The reason for implementing a 

larval control strategy specifically for An. stephensi is that 

there are already multiple malaria mosquito species 

throughout East Africa. Hence, controlling this vector is vital 

to stop the transmission of malaria. Currently, there are only 

three publications on the presence of An. stephensi in East 

Africa. Thus, the research question is: can we interpolate an 

An. stephensi habitat spectral signature to identify unknown 

locations of clustering and non-clustering artificial water 

containers that are suitable for An. stephensi. 

2. Methodology 

2.1. Study Site 

Kwale County is the southernmost coastal county of Kenya, 

although most of the county is inland. It is located just south of 

Mombasa, a major Kenyan port city, and borders Tanzania to 

the north (Figure 1). It spans a land area of 8,267.1 km
2
, 

though a majority of the 866,820 population lives within 90 

km of the coastline, leading to a population density of 105 

persons per km
2
 [13, 14]. About 80% of the population’s 

income comes from subsistence farming; however, only 30% 

of the population is considered food secure due to various 

conditions such as access to appropriate resources and climate 

change [15]. The county has a typical monsoon climate and 

two rainy seasons. The short rains begin in October and last 
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until December, after which it is hot and dry from January 

until April [16]. Then, the long rains typically start in March 

and continue until June or July, followed by cooler months 

[16]. The average temperature throughout the county ranges 

from 23° to 25°C, with higher temperatures usually along the 

coast [15]. 

Kwale (4°10’28” S latitude and 39°27’37” E longitude) is 

the capital of Kwale County, Kenya [17]. Located 30 km 

southwest of Mombasa and 15 km inland from the coast of the 

Indian Ocean, Kwale is a small town with an urban population 

of about 10,063 people [18]. The population is 48.6% male 

and 51.4% female [18]. Kwale has a large concentration of 

Digo and Duruma people, who are part of the Mijikenda 

ethnic group, and it is considered their main town [17]. 

 

Figure 1. Study site map of Kwale, Kenya and an image depicting the typical terrain of the area. 

2.2. Potential Habitats 

 

Figure 2. Image of a water tank in urban Kwale. 

Visual detection of potential habitats was done via Google 

Earth. The boundaries of the study area, urban Kwale center, 

were first delineated using the polygon tool, and it 

encompasses an area of about 7.5 km
2
. After which, gridlines 

one-second latitude (~32 meters) and one second longitude 

(~32 m) apart were overlayed on the study area. Each cell 

created by the gridlines was methodically scanned for large 

artificial water reservoirs or artificial containers that could 

hold water, such as the typical water tank found in the area, as 

exemplified in Figure 2. 182 potential habitats were denoted 

with a placemark and labeled with a number and description 

indicating the type of habitat. The latitude, longitude, and 

elevation associated with each placemark were then 

transferred into an Excel spreadsheet for further analysis and 

mapping. 

2.3. Spatial Autocorrelation Analyses 

The assumption for spatial independence was tested for the 

remotely identified An. stephensi observations employing the 

Pearson product-moment correlation coefficient [i.e., 

Moran’s Index (I)]. In statistics, Moran's I is a measure of 

spatial autocorrelation. Spatial autocorrelation is 

characterized by a correlation in a signal among nearby 

locations in space. Spatial autocorrelation is the correlation 

among values of a single variable strictly attributable to their 

relatively close locational positions on a two-dimensional 

surface, introducing a deviation from the independent 
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observation’s assumption of the classical statistics [19]. 

Moran’s I was employed as a diagnostic tool for quantitating 

model misspecifications, spatial non-homoscedasticity [i.e., 

uneven variance], and outliers in the satellite sensed, An. 

stephensi parameter estimators. Homoscedasticity describes a 

situation in which the error term (that is, the “noise” or random 

disturbance in the relationship between the independent 

variables and the dependent variable) is the same across all 

values of the independent variables [20]. The frequency dataset 

was stratified into georeferenced LULC classified groups of 

An. stephensi habitat proportions based on their occurrence 

abundance and distribution. Likewise, Moran’s I was 

employed to determine if the dependent variables were 

clustered or randomly distributed within a geographic space in 

Kwale. 

We employed R to generate Moran’s I by computing the 

cross mean of Euclidean inter-site distances between 

stratified, An. stephensi habitat sampled, explanatory values 

that were geographic neighbors. Our first step in Moran’s I 

analysis was to define “neighboring” polygons. [i.e., 

contiguous polygons, polygons within a certain Euclidean 

distance,] [21]. The LAGDISTANCE OPTION indicated the 

neighborhood size, which was important in the computation 

of the autocorrelation index for quantitating clustering 

propensities in the sampled variables. It is of note that lag 

distance in this research was dependent on the sampled 

county-level An. stephensi habitat parameter estimator sample 

dataset. Our goal was to create a variogram that invariably 

provided optimal estimates of spatial dependence for the 

underlying stochastic process within the dataset. 

The compute statement allowed the averaging of binary 

spatial weights within the autocorrelation statistical process 

needed for the construction of Moran’s I coefficient (an 

equivalent of regression slope for Moran’s scatter plot). 

Using the values from LAGDISTANCE and MAXLAGS we 

constructed an An. stephensi habitat frequency model in R 

without the No variogram option to compute the empirical 

semivariogram. A variogram is often defined as a measure of 

spatial variability. [19] Our strategy was that by sampling 

stratified, An. stephensi habitat capture points close to each 

other, then this would produce typically similar outcomes 

compared to sampling for the capture points separated by 

larger distances in geographic space. Here the variogram 

distance measured the degree of dissimilarity γ(h) between 

the sampled, stratified, An. stephensi habitat data separated by 

a class of vectors h. If z(xi) and z(xj + h) were pairs of 

exploratory georeferenced breeding site aquatic foci samples 

lying within a given class of distance and direction, then N(h) 

was the number of data pairs within a land cover class. 

Subsequently, the experimental semivariogram was defined 

in R as the average squared difference between the 

components of the sampled, the An. stephensi habitat 

stratified data pairs in geographic space employing the 

following equation:  

�ℎ = 12�ℎ∑ � = 1�ℎ	
 − 
� + ℎ2         (1) 

This spatial variability measure is a semivariogram [21]. We 

interpolated between the sample variogram and explanatory 

estimators. The variance of the entire dataset was re-defined as 

the sill and the distance at which the model semivariogram met 

the data set variance we defined as the range. 

We specified the CL option in the COMPUTE statement to 

calculate the 95% confidence limits for the classical 

semivariance. The Compute Statement described how to use 

the ALPHA= option to specify a different confidence level in 

the An. stephensi habitat frequency, forecast, vulnerability, 

county-level, artificial water container model. We requested a 

robust version of the semivariance with the ROBUST option 

in the COMPUTE statement. R rendered a plot showing both 

the classical and the robust empirical semivariograms. The 

Plot option to specify different instances of plots was 

featured in the empirical semivariogram. In addition, the 

autocorrelation Moran’s I statistics under the assumption of 

randomization using binary weights was generated. The 

output from the requested autocorrelation predictive, 

probabilistic, spatiotemporal analysis included the observed, 

computed Geary’s C coefficients. The finely tabulated 

expected value and standard deviation for each sampled 

stratified, explanatory covariate, the corresponding Z score, 

and the p-value were calculated in the Pr >j Z j column. The 

low p-values suggested non-zero autocorrelation for both 

statistics types. Note that a two-sided p-value was generated, 

which was based on the probability that the observed, An. 

stephensi habitat frequency coefficients lay farther away 

from j Z j on either side of the coefficient’s expected 

value—that is, lower than Z or higher than Z. The sign of Z 

for both Moran’s I and Geary’s C coefficients can indicate a 

latent positive or negative autocorrelation [19]. The output 

randomization estimates from the stratified autocorrelation 

frequency model were then evaluated in a spatial error (SE) 

model. An autoregressive model was employed whereby a 

geosampled, temporally dependent, socioeconomic stratified 

variable, Y, as a function of nearby sampled An. stephensi 

habitat frequency Y values [i.e., an autoregressive response 

(AR) or spatial linear (SL) specification] and/or the residuals 

of Y as a function of nearby Y residuals [i.e., an AR or SE 

specification]. Distance between frequency-sampled, 

stratified An. stephensi habitat predictors were subsequently 

defined in terms of an n-by-n geographic weights matrix, C, 

whose cij values were 1 if the sampled i and j were deemed 

nearby and 0 otherwise. Adjusting this matrix by dividing 

each row entry by its row sum, with the row sums given by 

C1, converted this matrix-to-matrix W. 

All residual estimates from the model were then evaluated 

in a SE model. An autoregressive model was employed that 

used a sampled habitat variable, Y, as a function of nearby 

sampled habitat Y values [i.e., an autoregressive response (AR) 

or spatial linear (SL) specification] and/or the residuals of Y as 

a function of nearby Y residuals [i.e., an AR or SE 

specification]. Distance between sampled An. stephensi 

habitat geolocations was definable in terms of an n-by-n 

geographic weights matrix, C, whose cij values were 1 if the 

sampled An. stephensi habitat locations i and j were deemed 

nearby, and 0 otherwise. Adjusting this matrix by dividing 
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each row entry by its row sum, with the row sums given by C1, 

converted this matrix to matrix W [19]. 

2.4. Mapping Ecological Models 

After spatial autocorrelation analysis, potential An. stephensi 

habitat hotspots with 95% confidence intervals and coldspots 

with 95% confidence intervals were obtained from the data set 

using ArcGIS Pro. Two separate layers were then generated: 

one for potential habitat locations within significant hotspots 

and one for potential habitat locations within significant 

coldspots. Three separate models were also created to compare 

the geo-ecological variables associated with potential An. 

stephensi habitats: Land Use Land Cover (LULC), Digital 

Elevation Model (DEM), and Normalized Difference 

Vegetation Index (NDVI). For the first model, the satellite 

imagery of the study area was utilized to manually create a 

LULC map. Using the criteria outlined in Table 1, color-coded 

polygons created with Google Earth and Google Earth Pro tools, 

were overlayed on the satellite imagery to divide the study area 

into urban commercial, urban residential, rural farmland, and 

forestland land covers (Figures 3, 4). The hotspot and coldspot 

locations were then overlayed on the LULC model and the 

percentage of hotspot and coldspot locations found within each 

type of landcover was determined. 

 

Figure 3. Creation of LULC map of Kwale urban center using Google Earth Pro. 

 

Figure 4. Close up of LULC map in Google Earth and the differing landcovers. 
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Table 1. Descriptions and criteria of LULC classifications. 

Land Use Land Cover Type Description 

Urban Commercial 
Structured layout of buildings near large parking lots; large paved or dirt roads; low vegetation; and businesses, schools, or 

government offices labelled on the satellite image. 

Urban Residential Moderately condensed buildings in a disorderly layout, smaller paved or dirt roads, light vegetation, and unlabelled buildings. 

Rural Farmland Cultivated lands, medium to light vegetation, dirt roads, sporadic man-made structures, and sparsely populated. 

Forestland Dense vegetation and little to no man-made structures. 

 

The DEM and NDVI maps of the study area were made 

within ArcGIS Pro after gathering satellite data from the 

Sentinel-2 satellite. The DEM satellite data was taken on June 

27, 2007 (12.5 m resolution) and the NDVI satellite image was 

retrieved on March 1, 2023. After overlaying the hotspot and 

coldspot locations on each model, we extracted the elevations 

and NDVI score associated with each point on the map. Then, 

the average elevation and NDVI scores for hotspot locations 

and coldspot locations were calculated. 

3. Results 

The n-by-1 vector x = [x1 ⋯ x n]
T contained measurements of 

a quantitative variable for n spatial units and n-by-n spatial 

weighting matrix W. The formulation for the Moran’s index of 

spatial autocorrelation used in this research was: 

��
� =
�∑�����������̄������̄�

∑������∑���
� �����̄�

�
	         (2) 

where	∑���∑�� 
� ∑!� 

�  with i ≠ j 

The values w ij were spatial weights stored in the 

symmetrical matrix W [i.e., (wij = wji)] that had a null diagonal 

(wii = 0). In this research the matrix was initially generalized to 

an asymmetrical matrix W. Matrix W can be generalized by a 

non-symmetric matrix W* by using W = (W* + W*T)/2 [18]. 

Moran’s I was rewritten using matrix notation: 
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where H = (I – 11T/n) was an orthogonal projector verifying 

that H = H2, (i.e., H was independent). Features of matrix W 

for analyzing of An. stephensi habitat data include that it: is a 

stochastic matrix, expresses each observed value yi as a 

function of the average of location I’s nearby data, and allows 

a single spatial autoregressive parameter, ρ, to have a 

maximum value of 1. 

The final model reveals a strong tendency for positive 

spatial autocorrelation in the An. stephensi habitat data 

(Moran’s I = 0.67, p<0.001) (Figure 5). Of the 182 potential 

An. stephensi habitats found, 120 potential habitats were 

determined to be significantly associated with either a 

hotspot or coldspot. Seventy-eight locations were within a 

hotpot with 95% confidence, and forty-two locations were 

within a coldspot with 95% confidence. Based on the LULC 

map, the potential habitat hotspot locations were mainly 

found in urban commercial (51.58%, N = 40) and urban 

residential areas (46.15%, N = 36) (Table 2). Only 2.56% (N 

= 2) of the hotspot locations were within rural/farmland areas 

and no hotspot potential habitats were located within the 

forestlands (Figure 6). In comparison, most of the potential 

habitat coldspot locations were also found within urban land 

covers, but there was a higher percentage of coldspot 

habitats located within urban residential (47.62%, N = 20) as 

compared to urban commercial (28.57%, N = 12). Moreover, 

in contrast to the hotspot coverage of potential habitats, there 

were significantly more potential habitats within the 

coldspot that were located within rural farmland land cover 

(19.05%, N = 8) and 4.762% (N = 2) of the coldspot habitats 

were located within the forestlands. 

 

Figure 5. Results of the autocorrelation analysis. 
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Table 2. LULC distribution of potential An. stephensi habitats within hotspots and coldspots. 

Land Use Land Cover 
Hotspot Coldspot 

Number (N=78) Percentage (%) Number (N=42) Percentage (%) 

Urban Commercial 40 51.28% 12 28.57% 

Urban Residential 36 46.15% 20 47.62% 

Rural Farmland 2 2.564% 8 19.05% 

Forestland 0 0% 2 4.762% 

 

Figure 6. Significant clusters of potential An. stephensi habitats overlayed on an LULC map of the urban Kwale center. 

 

Figure 7. Significant clusters of potential An. stephensi habitats overlayed on a DEM map of the urban Kwale center. 
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Figure 8. Significant clusters of potential An. stephensi habitats overlayed on a NDVI map of urban Kwale center. 

The results from the DEM model revealed a slight 

difference in elevations for the potential habitats within the 

hotspot and within the coldspot. The mean elevation 

associated with the potential An. stephensi habitats located 

within hotspots was 409.1 ± 6.2 m. In contrast, the potential 

habitats within the coldspot were, on average, at a slightly 

lower elevation of 379.5 ± 21.5 m. Moreover, as seen by the 

DEM model, potential habitats clustered in an area of higher 

elevation that was surrounded by slightly lower elevation 

(Figure 7). The NDVI model also revealed slight differences 

in the mean NDVI scores of the potential habitats within 

hotspots and coldspots. The potential habitats within the 

hotspot had an NDVI score of 0.121 ± 0.066, and the potential 

habitats within the coldspot had a slightly higher NDVI score 

of 0.168 ± 0.051 (Figure 8). However, considering the 

potential error, no significant difference was found between 

the NDVI scores of the potential An. stephensi habitats that 

were found within the hotspot versus the coldspot. Similarly, 

the mean NDVI scores for the hotspot and coldspot potential 

habitats were both associated with low vegetation. 

4. Discussion 

Potential An. stephensi artificial water container habitat hot 

and cold spots occur in urban commercial and urban 

residential landcover. The strong clustering of potential An. 

stephensi habitats in urban areas is likely to contribute to the 

mosquito’s presence as a vector of concern, and the vector’s 

ability to thrive within urban environments [1, 6]. The most 

probable reason for this is because larger anthropogenic 

populations would have more artificial water containers. The 

potential habitats, such as artificial water tanks and tires, are 

connected to human activity; thus, it would be logical that 

they would be clustered in densely populated areas. 

Moreover, studies on the recent expansion of this vector into 

new territories confirm the likelihood of An. stephensi 

habitation within urban commercial and residential areas. A 

study detailing the 2017 emergence of this new vector in Sri 

Lanka determined that An. stephensi larvae were found in 

sites with urban or semi-urban characteristics [22]. Similarly, 

a 2020 study of the spread of this new vector in Ethiopia also 

highlighted that An. stephensi was first detected in urban 

areas [23]. The concentration of viable habitats and the 

proximity to large anthropogenic populations, previously 

unexposed to malaria, in these settings exacerbates the 

potentiality of urban malaria epidemics, and it is imperative 

that surveillance and larval source management systems, 

such as “Seek and Destroy” focus their efforts in these areas. 

Further, sustaining “Seek and Destroy” seasonally would 

allow finer spatial targeting of artificial water containers in 

urban residential and commercial properties using 

drone/satellite remote sensing data. 

“Seek and Destroy” is a program that was created by Dr. 

Benjamin Jacob with the aim of working toward the 

elimination of malaria in affected communities. At its 

inception, “Seek and Destroy” has two functions: the first is 

at the implementation level, and the second is at the policy 

level. At the implementation level, “Seek and Destroy” uses 

new technology coupled with proven methodologies used in 

larval source management techniques. New technologies 

used include unmanned aerial vehicles, artificial intelligence, 

machine learning algorithms, GIS, and iOS-integrated 
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dashboards, among other technologies, to decrease the time 

lag in real-time data that can be used for evidence-based 

decision-making. The aim of “Seek and Destroy” is to focus 

on habitats where Anophelines oviposit to eliminate the 

vector where it is concentrated, immobile, and accessible. 

The techniques used are the basis of larval source 

management, which includes activities such as burying 

habitats, habitat modification, and targeted and responsible 

larviciding. At the policy level, “Seek and Destroy” brings 

together stakeholders from the political sector, the NGO 

sector, and university researchers in a way that will allow for 

decision-making to take place with real-time data and to 

create health systems strengthening policy to scale up this 

program from a test site to an entire country. 

Within an urban setting, potential An. stephensi habitats 

also tend to cluster in areas of slightly higher elevation. This 

study found that potential habitats within a hotspot were all 

condensed in the area of Kwale with the highest elevations. 

All the potential hotspot locations were found in an elevation 

range of about 390-420 m, which is within the previously 

found viable elevations for the vector [24]. Pemola Devi and 

Jauhari [24] determined that An. stephensi mosquitos in the 

Garhwal region of India are found within tropical (300-1000 

m) elevations, and apart from one potential coldspot habitat 

found at around 270 m elevation, our potential An. stephensi 

habitats fall within the known range. Moreover, the potential 

habitats tend to cluster in an elevated area of Kwale, which is 

surrounded by slightly lower elevations. This typographical 

result coincides with a study performed in Chennai, which 

found that malaria infections attributed to An. stephensi 

clustered in areas with higher elevations that were 

surrounded by slightly lower elevations [7]. However, they 

surmised that these results are due to mosquitoes breeding in 

the surrounding lower-lying areas before emerging and 

traveling to higher elevations for bloodmeals. Our results 

show that potential habitats also cluster in these 

topographical areas; thus, there is a possibility that the high 

rates of malaria could be due to the proximity of numerous 

Anopheline habitats instead. 

Clusters of potential An. stephensi habitats in Kwale, 

Kenya are closely associated with areas of low vegetation. 

Our results coincide with Pemola Devi and Jauhari’s [24] 

characterization of An. stephensi breeding habitats in the 

western Himalayas, which are typically found in areas of thin 

or negligible vegetation. Similarly, Sinka [6] concluded that 

although An. stephensi habitats can be seen in areas with 

higher concentrations of plants and algae, the typical larval 

site characteristic of their habitats is an area with no 

vegetation. While there were no significant differences in the 

mean NDVI scores of potential hotspot and coldspot habitats 

in our study, both sets of habitats had low mean NDVI scores, 

which are indicative of low vegetation. These results could 

be caused by the high number of potential habitats that were 

found within urban areas, which typically have low 

vegetation. In fact, the majority of the potential coldspot 

habitats were within urban commercial and residential land 

covers. Moreover, when searching for potential habitats, 

certain visibility is required from satellite imagery (< 20 

percent cloud cover). Therefore, potential habitats in areas 

with low vegetation cover have higher visibility and are more 

likely to be detected remotely. Nevertheless, artificial water 

containers are associated with human activity, and areas with 

human activity are likely to have lower NDVI scores. 

Understanding the distribution of potential habitats in close 

proximity to anthropogenic activity and populated areas can 

provide better information for prevention programs, as 

vectors that emerge from these habitats are more likely to 

inoculate human hosts. 

Artificial water containers in slightly elevated urban areas 

with low vegetation are ideal candidates for potential An. 

stephensi habitats. Utilizing the ecological and typographical 

results from our study we can construct robust surveillance 

systems for the timely detection of this emerging vector in 

communities deemed at-risk for invasion. Moreover, the 

clustering propensities of potential An. stephensi habitats can 

inform “Seek and Destroy” larval management systems and 

affected communities can efficiently use limited resources by 

prioritizing clusters of potential habitats for treatment. 

There are some limitations in the results, however, as there 

is a possibility of bias. Since the detection of habitats was 

performed through manual remote visual detection, there is a 

possibility for human error when searching for and labeling 

artificial containers. Nevertheless, potential bias was 

minimized by the use of gridlines, and each gridded area was 

scanned with the same amount of effort; therefore, any 

possible errors or missed habitats were evenly distributed 

throughout the study area. Errors may have also arisen due to 

the visibility of potential habitats, which could have been 

compromised by vegetation or other structures, as mentioned 

previously. Likewise, Google Earth images of the study area 

consist of bands of satellite images taken at different times 

and with varying quality, which could have further obscured 

the detection of artificial water containers. Similarly, our 

manual method of creating the LULC map may lead to some 

limitations due to the difficulty in classifying between 

urban-rural and urban commercial areas. In contrast to areas 

with urban planning, homesteads and businesses are often 

intermingled in Kwale, complicating the distinctions between 

the two. Moreover, many of the classifications rely on the 

Google Earth identification of businesses, schools, and 

government buildings. Therefore, if commercial businesses 

were not up to date or properly labeled, then that could lead 

to improper classification. Nevertheless, the distinction 

between urban areas and rural farms or forestlands was clear 

and the clustering propensities of potential habitats in urban 

areas in Kwale is undisputable. 

Further studies are suggested to confirm our results 

through field verification of artificial water container habitats 

in Kwale. Similarly, studies on the detection and counts of An. 

stephensi larvae within these habitats could bolster studies on 

the clustering propensities of these habitats and factors that 

may influence these clustering behaviors. Moreover, “Seek 

and Destroy” larval management strategies should be 

implemented for spatially targeting An. stephensi larvae in 
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urban ecosystems. Therefore, further studies on the 

effectiveness and efficiency of this larval management 

system compared to the employment of larvicide can 

influence the direction of future urban mosquito management 

programs. 

5. Conclusion 

Integration of remote visual detection via satellite data and 

GIS algorithms can transform monitoring and surveillance 

methods in Kwale, Kenya. Using Google Earth and ArcGIS 

software, the study determined that types of land covers, 

elevations, and vegetation index influence the spatial 

dynamics of potential An. stephensi habitats. These factors 

can then be utilized to optimize monitoring methods and 

prioritize larval management systems in place. Typical 

malaria and vector surveys in Kenya consist of ground teams 

walking and covering entire communities in search of 

habitats. However, this is time-consuming and expensive as 

large teams must be paid for each day of monitoring. In 

contrast, we can implement overhead capabilities, such as 

satellite data, to geospatially target clusters of potential 

habitats and optimize vector surveys. Moreover, we can 

supplement malaria prevention tools currently in place with 

new methods of larval management that employ the same 

satellite data and ArcGIS algorithms. As we move towards 

eradication of malaria, we can utilize these technologies to 

prioritize clusters of artificial water containers for efficient 

vector control programs by determining and mapping areas 

for the purposes of “Seek and Destroy” larval management. 
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